首页> 外文OA文献 >Nonparametric maximum likelihood estimation of probability densities by penalty function methods
【2h】

Nonparametric maximum likelihood estimation of probability densities by penalty function methods

机译:罚函数法的概率密度非参数最大似然估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When it is known a priori exactly to which finite dimensional manifold the probability density function gives rise to a set of samples, the parametric maximum likelihood estimation procedure leads to poor estimates and is unstable; while the nonparametric maximum likelihood procedure is undefined. A very general theory of maximum penalized likelihood estimation which should avoid many of these difficulties is presented. It is demonstrated that each reproducing kernel Hilbert space leads, in a very natural way, to a maximum penalized likelihood estimator and that a well-known class of reproducing kernel Hilbert spaces gives polynomial splines as the nonparametric maximum penalized likelihood estimates.
机译:当先验确切地知道概率密度函数对哪个有限维流形产生一组样本时,参数最大似然估计过程将导致较差的估计并且不稳定。非参数最大似然过程未定义。提出了一种非常一般的最大惩罚似然估计理论,该理论应避免许多此类困难。事实证明,每个重现内核希尔伯特空间都以非常自然的方式导致了最大惩罚似然估计,并且众所周知的一类重现内核希尔伯特空间给出了多项式样条作为非参数最大惩罚似然估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号